Reporter: Sainan Wei

Visiting scholar Supported by the Hebei Provincial Department of

Human Resources

ENSAIT, France, From 24 July to 13 Oct.

Department of Textile Engineering, College of Textile & Garment,

Hebei University of Science and Technology, China

Email: wsn1009@sina.com

Tel.:+8613284412900

Report catalog

O1 Introduction of Hebei University of Science and Technology

Self-introduction

1. Introduction of Hebei University of Science and Technology (It can be abbreviated as HEBUST)

It was established in June 1956 and is located in Shijiazhuang, capital of Hebei province, China, about 300 kilometers away from Peking, one and half hour train time from Capital Peking, covering an area of 1,618,000 square meters. There are over 28 thousand full-time students, as well as more than 2200 teachers and staff members.

18 Colleges in HEBUST

College of Materials Science and Engineering	College of Chemical Engineering	College of Textile and Garment
College of Environmental Science and Engineering	College of Mechanical Engineering	Sports Work Department
College of Foreign Languages	College of Architecture and Engineering	College of Electrical Engineering
College of Management and Economics	College of Civil Engineering	College of Food and Biology
College of Science	College of Humanities and Law	College of art
College of Information Science and Engineering	Marxist Academy	College of Film and Television

College of Textile and Garment of HEBUST

It was founded in 1998. The discipline system covers all segments of textile and clothing. At present, There are 77 faculty members and about 1,500 students in the college, including 14 professors and 22 teachers with doctoral degrees.

1. Textile Engineering

Majors

2. Clothing Engineering

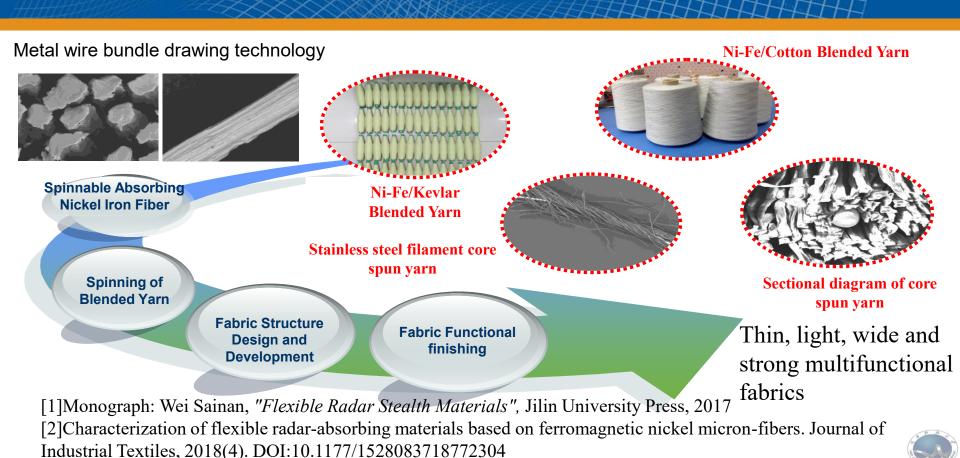
3. Dyeing and Finishing Engineering

4. Fashion Design

2. Self-introduction

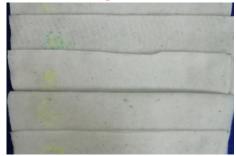
- Professor of Textile engineering
- > PhD of Textile engineering, Tianjin polytechnic university, China
- ➤ I have been working at Department of Textile Engineering, College of Textile & Garment, Hebust since Nov. 2006
- ➤ Visiting scholar supported by the CSC(China Scholarship Council) in Manchester University UK. from Feb.2016 to Feb.2017, Deakin University Australia last year for 3 months

My teaching courses


- "Industrial textiles"
- "High performance fibers"
- "Frontiers of Textile Specialty"
- "Foreign trade correspondence"
- "Fashion Marketing"
- > "Fashion English"

My research activities

- ➤ 1. Flexible electromagnetic wave absorbing fabrics
- ➤ 2. Multi Spectrum Camouflage and Stealth Fabric
- ➤ 3. Nickel plated fabric absorbing composites based on VARI process
- ➤ 4. Testing and evaluation of surface hairiness on fabrics

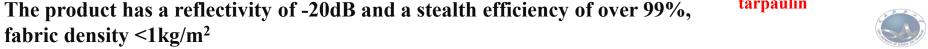

1. Flexible electromagnetic wave absorbing fabrics

Fabric Structure Design and Development

Nickel iron fiber/cotton absorbing woven fabric

Nickel iron fiber wave absorbing nonwoven fabric

Nickel iron fiber/aramid absorbing knitted fabric

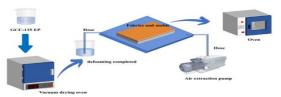

Absorbing cluster velvet blanket

Nickel iron fiber/cotton absorbing knitted fabric

Waterproof, flame retardant, multispectral absorbing tarpaulin

2. Multi Spectrum Camouflage and Stealth Fabric

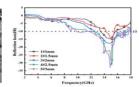
The products have two types: individual soldier camouflage cloak and apparels, which are made by fabric coating, cutting, and weaving technology. The printed coating fabric contains specific components that can have both visible light and infrared camouflage and stealth functions.


[1] Investigating the electromagnetic wave absorbing capacity and mechanical properties of flexible radar-absorbing knitted compound materials, Journal of Industrial Textiles, 2022 ,51(4S): 5482S–5502S. DOI:10.1177/1528083719877006 [2]Preparation and mechanical properties of absorbing composites based on nickel plated fabric. Journal of Industrial Textiles.2024(6):1–14. DOI:10.1177/15280837241260065

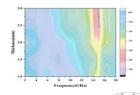
3. Wave absorbing composites based on VARI process

Process flowchart of electroless nickel plating on fabrics

Preparation of carbon fiber UD cloth, nickel plated fabric, and glass fiber absorbing composite materials using VARI process

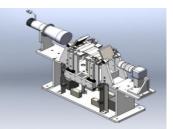

Wave absorbing fabrics with nickel particles on the surface were prepared by plating method. Then proceed with the layering process with glass fiber/epoxy resin as the transparent layer, nickel plated fabric as the absorbing layer, and carbon fiber UD cloth as the reflective layer. Using vacuum assisted resin infusion (VARI) process, absorbing composite materials will be prepared with both absorbing and mechanical properties.


[1]Progress on Microwave Absorption Performance of Carbon Fiber Reinforced Composites. Chemistry Select, 2024(9):1-21. DOI:10.1002/slct.202305226 [2]Flexible composites of Ni-Fe fiber/NBR for effective electromagnetic wave absorption. Appl. Phys. A (2024).DOI:10.1007/s00339-024-07928-3



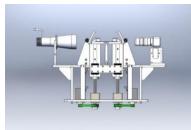
43

SEM image (a) unmodified fabric (b) activated fabric (c) nickel plated fabric


Reflection loss plots of different thicknesses composites

4. Testing and evaluation of surface hairiness on fabrics

The traditional evaluation of fabric hairiness often adopt manual visual inspection of fabric creases. This instrument adopts projection counting processing technology, which uses parallel light to irradiate the folded part of the fabric. It can captures the hairiness image and can characterizes the number, length, area and other distribution status of the fabric hairiness, calculates the level of the fabric hairiness based on these indexes. We have authorized patents and national standards.



Instrument appearance

中华人民共和国纺织行业标准

纺织品 织物毛羽测试方法

Internal structure of the instrument

Computer interface

Computer interface

Achievements

Applications of fabric hairiness tester

Interest to participate to teaching activities at ENSAIT

Follow some professional courses, including teaching and practical courses.

Courses interest:

- Spinning
- Weaving
- dyeing
- Industrial textiles
- High performance fibers
- **>** ...

My interest to research projects with Gemtex

Participate in related conferences, seminars and academic discussions.

Research projects of interest

- ➤ High performance and functional textiles
- Electromagnetic wave shielding and absorbing functional materials
- > Fiber-reinforced composites
- Advanced Textile Testing Technology

Seminar

Date: End of September

Topic of my scientific research works

- > Eelectromagnetic wave absorbing fabrics
- > Testing and evaluation of surface hairiness on fabrics

= = = Thank you for attention.

And if you want to have an onsite discussion (before 13th Oct.)

wsn1009@sina.com

Sainan.wei@ensait.fr

Welcome to China and Hebust